Dimension Functions of Cantor Sets
نویسندگان
چکیده
We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets.
منابع مشابه
Classifying Cantor Sets by Their Fractal Dimensions
In this article we study Cantor sets defined by monotone sequences, in the sense of Besicovich and Taylor. We classify these Cantor sets in terms of their h-Hausdorff and h-packing measures, for the family of dimension functions h, and characterize this classification in terms of the underlying sequences.
متن کاملRigorous Effective Bounds on the Hausdorff Dimension of Continued Fraction Cantor Sets: a Hundred Decimal Digits for the Dimension of E2
We prove that the algorithm of [13] for approximating the Hausdorff dimension of dynamically defined Cantor sets, using periodic points of the underlying dynamical system, can be used to establish completely rigorous high accuracy bounds on the dimension. The effectiveness of these rigorous estimates is illustrated for Cantor sets consisting of continued fraction expansions with restricted digi...
متن کاملParabolic Cantor sets
The notion of a parabolic Cantor set is introduced allowing in the definition of hyperbolic Cantor sets some fixed points to have derivatives of modulus one. Such difference in the assumptions is reflected in geometric properties of these Cantor sets. It turns out that if the Hausdorff dimension of this set is denoted by h, then its h-dimensional Hausdorff measure vanishes but the h-dimensional...
متن کاملε-Distortion Complexity for Cantor Sets
We define the ε-distortion complexity of a set as the shortest program, running on a universal Turing machine, which produces this set at the precision ε in the sense of Hausdorff distance. Then, we estimate the ε-distortion complexity of various central Cantor sets on the line generated by iterated function systems (IFS’s). In particular, the ε-distortion complexity of a C Cantor set depends, ...
متن کاملHausdorff Dimension and Hausdorff Measure for Non-integer based Cantor-type Sets
We consider digits-deleted sets or Cantor-type sets with β-expansions. We calculate the Hausdorff dimension d of these sets and show that d is continuous with respect to β. The d-dimentional Hausdorff measure of these sets is finite and positive.
متن کامل